Hallo!
Ich soll zeigen, dass jede Gleichung n1x+n2y+n3z=c mit (n1/n2/n3) ungleich (0/0/0) ist Gleichung einer Ebene im R3 mit Normalvektor n=(n1/n2/n3)
Ich hab mir folgendes überlegt: als erstes habe ich einen Punkt gesucht der diese Gleichung erfüllt also A=(c durch n1/0/0) --> n1*(c/n1)=c n1 ungleich 0, dann B=(0/c durch n2/0) und C=(0/0/c durch n3) also gibt es eine Punkt (p1/p2/p3) der diese Bedingung erfüllt und weil ich ja jede reelle Zahl als inneres Produkt von Vektoren schreiben kann und (x/y/z) jeder Punkt der Ebene ist folgt (n1/n2/n3)*(x/y/z)=(n1/n2/n3)*(p1*p2*p3) und dann ist ja der rechte Ausdruck gleich c
und ich hätte damit alles gezeigt oder würdet ihr etwas anderes machen?