sei \(n\geq 2\) eine ganze Zahl. Sei \(p(t)=t^n-1\). Sei \(q(t)\in\mathbb{Q}[t] \) ein normiertes Polynom von Grad 2, welches das Polynom p(t) in \(\mathbb{Q}[t]\) teilt. Beweise, dass
\(q(t)\in \){\(t^2\pm2t+1,t^2\pm t+1,t^2\pm1\)}
\(q(t)\in \){\(t^2\pm2t+1,t^2\pm t+1,t^2\pm1\)}